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The surface term in the ~:hermodynan3ic pressure of  free q u a n t u m  gases is 
proved to exist and  is evaluated.  Detailed proofs are given for parallelepipedic 
doma ins  with Dirichlet,  periodic, and N e u m a n n  boundary  condi t ions  and 
for more  general doma i ns  with Dirichlet boundary  condit ions.  
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I .  I N T R O D U C T I O N  

The thermodynamic description of large macroscopic systems is obtained 
in statistical mechanics by considering the thermodynamic limit of the 
finite volume pressure: 

5 P , , ( 5 ,  z) .-- [i,,v(A)] I<,g ~(A, i;, z) (i) 

where ~(A, fi, z) is the grand canonical partition function. More precisely, 
it is expected that for A -~ co, in a suitable manner, log 3(A,/-3, z) has an 
asymptotic expansion 

log-~(A, fl, z) = V(A)flP(fl z) i S(A)P.,(fi, z) _ 0(s (2) 

where V(A) is the volume of A and S(A) is the area of the boundary, ~;'A. erA.  
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The quantity P(fl, z) is uniquely delined if the existence of the limit 
of  ( l o g 2 ) / V  is established with /I ..... m such that S ( A ) / V ( A ) - ~  O. 
The existence of this limit has been proved for a wide variety of  
systems.(a.2) 

If the system is considered to have macroscopic extensions in all dimen- 
sions, such that surface effects are irrelevant for its thermodynamic behavior, 
the tirst term of expansion (2) is a good candidate for the equation of stale 
of the system. However, for many systems of physical intersct, e.g., thin 
films or wires, this is not the case. Then the second term of expansion (2) 
has to be considered and the problem of the existence of 

Ps(~, z) -- lim {[log E(A, 5, z) - V(A) ~P(~, z)]/S(A)} (3) 
,/1-~ XC 

arises. This is a much more difficult problem and, as liar as we know, very 
few results are known. ~3'41 Hence even the simplest models might be of  
interest. 

We shall be concerned with models of free quantum gases, for wilich 
we prove the existence of, and evaluate, the limit (3). The calculation of the 
limit (3) may be relevant to the study of" finite size effects for free quantum 
gases or equivalent models. The latter problem has been considered for a 
long time both analytically and numerically. "~ 

One way to take into account the influence of the surface is to evaluate 
the surface term in the der,sity of states, using generalizations of Weyl's 
asymptotic formula. "~) However, in vie~ of the asymptotic character of these 
results, there is no simple way to evaluate tl~e surface term in the grand 
canonical partition function. 

Our method consists in writing the grand canonical partition function 
in terms of the Green function of the heat equation and to use the properties 
of  this Green function. However, difficulties arrise when imndling Fermi 
systems with z .>1 z 0, where z, depends on boundary conditions, and we 
shall not consider this case. 

In Section 2, the grand canonical partition functions for Maxwell- 
Boltzmann (MB), Fermi-Dirac (FD), and Bose-Einstein (BE) statistics are 
written in terms of  the Green function of the heat equation. 

In Section 3, the case of  parallelepipedic domains and Dirichlet, periodic, 
and Neumann boundary conditions is considered. 

[n Section 4, we study in some detail the most interesting case of general 
domains and Dirichlet boundary conditions. 

In Section 5, we state, without a detailed proof, the results for more 
general boundary conditions. 
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2. REPRESENTATION F O R M U L A S  FOR 
G R A N D  P A R T I T I O N  F U N C T I O N S  

Let us consider a free quax:tum gas enclosed in a bounded domain 
/ / C  ~ with sufficiently smooth boundary #:A. For simplicity, we take 
h :-: M .... I. The formal Hamiltonian for an ,-particle system contains 
only the kinetic energy term 

~t 

I ltn . . . . .  2 ~ A, (4) 
~- . .1  

In order to define properly the Hamiltonian as a self-adjoint operator 
on L'-'(A), we must add boundary conditions for wave functions. We shall 
consider boundary conditions of the following types: 

e~b/e.n = cs 4, (Sa) 

~b = 0 Dirichlet boundary conditions (5b) 

periodic boundary collditions (5c) 

Dirichlet boundary conditions correspond to a infinite wall potential and 
are the most interesting from a physical point of view. Boundary conditions 
(5a) ~ith c~ = 0 represent Neumann (elastic) boundary conditions. Of course, 
periodic boundary conditions can be imposed only on parallelepipedic 
domains. By the separation of variables, the cigenvalue problem for the 
operator defined by (4) and (5a)--(5c) can be reduced to the eigenvalue 
problem for a one-particle Hamiltonian: 

Of course the A n depend both on A and on the boundary conditions. For 
simplicity, we shall no longer mention explicitly the dependence on boundary 
conditions. 

Let G4(x, 13; x', 0) be the Green l'unction of the heat equation, i.e., 
G A satislies 

~A~GA(x, 8; x',  O) = (O/O~) G~.:(x,/3; x'. 0); x, x' e A, /3 > 0 
(7) 

lim G A(X , 8; X', O) = ~(X - -  X')  
,q'a0 

together with the appropriate boundary conditions on c,A. For example, 
for Dirichlet boundary conditions, 

Ga(x, fl; x', O) = O, x ~- aA, x' e A (8) 
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GA(X, /~; X', 0) can be represented as r 

a , , ( x ,  is; x ' .  o) .... Z .... '"" �9 e , ls , , (x)  e , , , * ( x ' )  (9) 
#i 

from which we find 

y' ~~  ..... _( G,(x, ~; x, o)d"x (10) 
? l  * - 

In the following, we shall express the grand partition functions for free 
quantum gases in terms of GA using (10). 

2.1. MaxwelI -Boltzmann Statistics 

In this case, the problem is very simple, as 

which gives 

3(A'f l 'z) " ~ (z'i/!)(~ e ; j a , ' ) ,  o ', ( l l )  

I'~( A ,  #'t Z) = exp [:  f . l  ('3~'1('\*" /t~; "ll- s O)dl:\ "] (12) 

2.2. Fermi-Dirac and Bose-Einstein Statistics 

The grand-canonical partition Function has the well-known form ~sl 

re(A, 5, z) --- I ]  r~,'(~ 
: t l  

where E ~:-:--I for FD statistics and ~ ::  I 
identity 

log(l -+-u)--- ~ ( - I )  e l(u#>/P) u -Q 1 (14) 
P 1 

~-,,--:~o)]' ( i  3) 

for BE statistics. Using the 

we have 

log 3(A, ~, z)--- k #' t(_r,:,p)(~ e "~P~ ) 
P 1 

• ( d '  '-P/I') ( O'.,(x, ~P; .v, 0) d"x (15) 

This kind of representation appears in an approximate ti)rm in Ref. 9 and 
can be obtained also as a particular case o1 the functional integral representa- 
tions of the grand-canonical partition functions. (~~ 



Grand-Canonical Pressure of Free Quantum Gases 123 

From (13), it follows that the series (I 5) converges for 

' :  ~-i e '';'~'' (16) 

where At, is the lowest eigenvalue of  the one-particle I-lamiltonian, so that 
the representation (15) is suitable for Bose sy~,tems. For l:ermi systems and 
z - zo " e -~~a,,, another  representation must be used. As expected, (12) can 
be obtained from (15) in the limit ---,- 0. 

3. P A R A L L E L I P E P E D I C  D O H A I N S ;  D I R I C H L E T ,  N E U H A N N ,  
A N D  P E R I O D I C  B O U N D A R Y  C O N D I T I O N S  

In this section, we shall consider the simplest case in which /1 is tile 
parallelepiped 0 ~ x,. < L , ,  and boundary conditions are of  Dirichlet. 
Neumann,  or periodic type. Becaqse of  the particular shape of  the domain A, 
the separation of  variables can be used, and 

GA(X, /3; X', O) = ~ GL(.V, , fi; X, ' ,  0)  (17)  

Moreover,  for these boundary  conditior, s, tile Green functions Gt.O',/3; y ' ,  O) 
a r e  k n o w n .  (7) 

GL(y,/3; y ' ,  0) = Z [G0(y,/3; 2nL -+ y ' ,  0) 0Go(y,/3; 2nl_ -- y ' ,  0)] 
r~--zo 

(18) 
where 0 ...... 1,0, 1 for  Dirichlct, periodic, and Neumann boundary 
conditions, respectively, and 

Go(y,/3; y' ,  0) = (2,-.r/3) -1/2 exp[ - - (y  -- y')2/2fi] (19) 

F rom (19), it follows that  

L 
~'L ( Go(y,/3; 2nL  --  y ' )  dy - (2w/3) -~ 

which gives 

,v. 

�9 '-' j exp(---2u2/f3) du = 1, 

(20) 

where 

,~L 
J o c;~(y, ~; y, o) dy = (2~-[s)--,:~[t..-i- .'_,Ot2~f3)'," -! ~/L,  f3)] 

R(L , /3 )  = 2L L exp(--2n2L2//3) 
rl=l 

(21) 

(22) 
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From (15) and (21), we have 

log E(A,/3, z) = , 7p)-i2-;78),..~i-~ = L~ J ~ (2r, m/3)'/2 ' 

~, Ertt-|Z~a 
~- - - - -  Q(I., , m/3) (23) 

where Q consists of  a finite sum, each term containing at least one R(L~, m/3). 
We shall show now that the second sum in (23) gives no contribution 

to the surface term in the thermodynamic limit. A rough estimate gives 

0 ~ R ( L , / 3 ) =  2L exp('-., fi I 

% 2 L [ e x p ( - -  /3 / f  j cxp (  

2n'aL2 )] e .t 
tJ - - 2  �9 

2u'-'L2-) du] 

. . . .  ~ 2 L [ e x p ( - - L ~ ) ] [  1 ' 41_ J (24) 

Now let 0 ~< z < 1. What  we need are estimates of sums like Z.,,.1 z"''v 
exp(-.  L2/m/3). Let mo be given by the equation 

z ~~ ::: exp(.- l."/mo/3) (25) 
Then 

z'"/~ exp -- ~Q }-" exp .... 3ii " z ..... 
r 1 ~ = l  ~ 1 = : 1  m = m  0 : 1 

f~ ,.') ., o exp(,--..-,Su-- du i 1 - - z  

, l.,z I 1 _ ~ _  L ~  , 

(26) 
If  use the notation 

I/(A) =.~ f |  l . i ,  S(A) :. 2 ~ VI L, (27) 
~ - 1  ) = 1  i;,~l 

then the results which follow from (23) and (26) can be stated as follows. 
I f0  < z - <  l , f l  > 0 ,  then 

log ~(A,/9, z) 
lira : (2r,/3)" " gl t,,.2~ (~, z) (28) 

L, .,. V(d) 

lirn log •(A,/3, z) - V(A)(2w/3) -~,'' g~, u. ,_,)(< z) 1 
*., ,.~ S fA)  ......... a O(2'rtc3J"-"'"Z g'l ,,,,,'2(q z) 

(29) 
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where 
lZ.'~ 

m" (30) 
ill J 

The relation (28) expresses the well-known thermodynamic pressure of the 
ideal BE or FD gas, while (29) represents the surfi~ce comribution to the 
thermodynamic pressure. We stress ~hat for periodic boundary conditions, 
there is no surface term, which, ofcourae ,  is as expected. Finally, we remark 
that  for v ~ 2 and L~--+ oo, i = 1 ..... v, such that 

lim[(iog/.,). 'L;.] .... 0 (3 I) 

for all pairs 1 ~< i, k ~ v, Eqs. (23) and (26) contain more information than 
(28) and (29), namely the first J, -~- I terms in lhe asymptotic expansion of  
log Z(A,  fi, z) with respect to the size o f  A. 

4. G E N E R A L  D O M A I N S ;  
D I R I C H L E T  B O U N D A R Y  C O N D I T I O N S  

The p roof  of  the existence, and tile evaluation, of  the surface term for 
more  general domains and boundary  conditions is more dil:l~cult, as there 
are no explicit formulas for the Green functions. It is necessary to write 
down the integral equations for the Green functions and to make the relevant 
estimales, w2~ However, for Dirichlet boundary  conditions, the use o f  the 
maximum principle for the solutions of  the heat equation ~:~ allows us to give 
an alternative p roof  o f  the fact that  the formula (29) for 0 -= - 1 remains true 
for rather general domains. 

In the following, we consider that A , ~0 satisfying the conditions: 

(a) A is a convex domain ;  (b) for every .v ~: iA,  let R(.v) be the radius 
o f  the largest sphere contained in A and tangent t o / : A  at the point x. Then 

lira [ i n f  R(x)] lira R(A,  -.r, (32) 
A-,--g x~,1 ,~T7 

The condit ion (a) is not an essential one but simplifies the proofs. For every 
x '  c A, let the point x" e OA be such that 

d(x', x ' )  : :  x '  --- .v" - inf d(x', 39, 
y c i ' . t  

/-/,.., be the plane tangent to ~'A at the point x", and x" be the point symmetric 
to x '  with respect to H , - .  We write the Green function m the form 

GA(X, /3; x',  0) : :  Gz(x, B; x'. O) .... Z,~(x, /9; x',  0) (33) 
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where 

Ga(x,/3; x', 0) --=- G0(x , fl; x', 0) -- G o (x,/3; x", 0) (34) 

is its plane approximation. We shall prove now that ZA is sufficiently small 
so that it gives no contribution to the surface term of  the thernaodynamic 
pressure. To this end, we need estimates on ZA.  

From the fact that GA(x, r~ x', O) ;~ 0 and from the maximum principle. 
it follows that for every x, x'  c~/1, 

and of  course 

0 ,~: ZA(X,/3; x'. 0) G~(x,/~ x', 0) (35) 

0 ~_ ZA(X, [3; X', O) G.(V, /3: X', 0) (36) 

The estimates we need follow from (35), (36), and the maximum principle. 

1. For every x' c A, 

0 ":- ZA(X', /3; X', 0) ~ (2rr/3) -v/" [I -- exp(-  4de/213)] ~. (2~/3) -v,'~ 2d2//3 (37) 

where d 2 = d2(x ', x"). The inequality (37) lbllows easily from (35) and (34). 

2. For every x' ~z A, 

0 ~ ZA(X', /3; x', O) ' :  [exp(v.2)] ~ ') .... .z (_=/,) exp( d"/'2fl) (38) 

Let d z ~:/3v and y e/-iA. From (36), x~c have, using the maximum principle 
and the fact that ZA(X, 0; X', 0) == 0, 

0 < ZA(X', /3; X', 0) s:.: sup Go( y,/~J'; x', 0) 
V's~;A 

0 '  0 '  < f~ 

::-: sup (2rrfl' -.e exp( -.d2/2/3 ') (39) 
0 ";J" ;! 

Since for 0 < /3 '  < / 3  = dZ/l,, the function on the r.h.s, of (39) is increasing, 
it follows that if ct z ~~ fi~,, 

0 ~:i ZA(X', /3; X', O) (2rrf i )""  e• (40) 

If d 2 < fie, then from (36), we have 

0 ~- ZA(x',/3; x', O) ~ (2~/3) ' :~ [cxp( --d2/213)] exp(d2/2/3) 

"i [exp(v/2)] (2,-r/3t -~,2 exp(-da/2/3) (41) 

and (38) follows from (40) and (41). 
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3. Let d < R(A)I2. Then 

0 ~ ZA(x',/3; x', 0) :L 2(v/e) ''/~ [I/R(A)d" ~] (42) 

Again we make use of  the maximum principle. Let Z(x") be the sphere with 
radius R(A) contained in A and tangent to ~;A at the point x". Since 
y.(x") C A, we have 

0 ~ ZA(X', fl; X', 0) ~- sup GI(y,/3'; x', O) 
ye? A 

(W.~I ' " (  ;~ 

~{ sup Gt(z,/3'; x ' ,0 )  (43) 

Let us take, first, the maximum over z. With the notations of Fig. 1, we have 

Gx(z,/3'; x', 0) ,= (2rr/3') -~/z exp .... 2t7' 

• i l -  exp [--  4dR(I .... cos ~c)]I (44) 
2#' 

Taking into account that  I -- e -t ~.~ t, for t ) 0, and that d < R/2, we get 

sup Gz(z,/3'; x', 0) <~ (2rr/3')-~i~(2d/R) exp(--(F/2fi') (45) 
zc~(~") 

which gives (42) taking the maximum over/3' ~ (0, ~ )  in (45). 

i 

i 

i . ,  

i ~ . '~  / iz#)  
....... . . /  /"I 

Fig. 1 

8zzi7/z-3 



t28 G. Nenclu 

Let aA(d) be the set of points of A such that d(x, iA) -= d. From the 
convexity of A, the area of k,A(d) is a monotonically decreasing {1ruction 
of  d. in particular, 

S(A) :.:: ,S'(~,A(d)); d :: 0 (46) 

Denoting by d o the sotutiop of the equation 

(~)",'2 l I 2d" 
2 --R-d;Ti -: (P-Tr/3i 7'~ 7 -  (47) 

and collecting the results contained in (37), (38), (42), and (46), we find 

0 ~<. f,~ Za(x', raft; x', O) dvx ' 
M] 0 

.<. s(A)[m#(2~-,,,#)'~'- J,, " '  ,/, 

. 2  ' '  "'~ 1 . . . .  1 (__ 

--- -k- (-Y J.o-y,- " + J.,., ;) 
_~ S(A) E(R, mt~ ) (48) 

Performing the integrals in (487, it is easy to see that for every 0 q~ z < 1, 

lim ~ E(R, mS) z'":m) -= 0 (49) 
R-~ a 

m=l 

which finishes the proof of the lilct that Z~ does not contribute to the surface 
term of the thermodynamic pressure. 

We shall now evaluate the surface term from Gl(x', raft; x', 0). 
From (46), it follows that 

f Go(x', raft; x", O) d"x < S(A) .l(2,-rmfi)~/2[I/(2~mfi) ";2] (50) 
A 

which gives 

iT~ ~ Goc<,,,~;.,.'".oT,~.," 4(5;~.;.~U_,,. ~ ~5~) 

On the other hand, for every 7/ .0 ,  d .. 0, if A is sutticiently large, 

S(aA(dl)."S(A) :- 1 �9 '/ (52) 

From this, it follows that 

f 1 I 
lira ~ ao(X', ,,,#: .,.". o) ,#x' :., a, ~#7,;/~p ;,-, 53) 

S ( A )  ,i A 

From (51) and (53) and the iitct ttmt. tbr 0 -:i z -< 1, the series are 
absolutely convergent, the formula (297 follows. 
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5. T H E  P R O B L E M  O F  O T H E R  B O U N D A R Y  C O N D I T I O N S  

In the previous sections, we have evaluated the sLIrl~ce term of the 
thermodynamic pressure for Dirichlet boundary conditions and the proof  
rests heavily on the maximum principle for the heat equation. I:or more 
general boundary conditions, this method can no longer be used. Since in 
this general case, the proofs are longer and more technical, we shali give 
here only the results and a plausibility argument, reserving the full proof  
for a future publication. We begin with the form ,~f the Green function for 
a half-space. If  the boundary is the hyperplane normal to Ox~, A = 
{x  I x~ > 0},  x '  = ( x  1' , 0 , . . . ,  0)  a nd  y =: (_v~, 0 .. . . .  0);  then c~ 

GA(y, fl; X', O) == Go(3:, ~; x', O) :- G,,( y, fl; - x ' ,  O) 

- -  2 ~  j d u  ~ . . . .  G,,( y ,  t3; - -x '  --- u, O) d u  (54)  
,1 0 

Now, if the surface is sufficiently smooth [i.e., ,4 satisfies the condition (32), 
for example], then locally the Green function for A can be sutficiently well 
approximated by Green functions for suitably chosen half-spaces and from 
(54) we reach the conclusion that the surface term in the grand canonical 
thermodynamic pressure is given by 

Ps(/~, z) -- �88 g~,,~/z(~, z) 

Era- 1Znz "i: 
- ~'(2rr/~)-~/~ m,/2+ 1 I m=l 

" " ' ~  ' t2 dt] 

(55) 

As expected for a = 0, cr--~ 0% we recover lhc results obtained in previous 
sections. 
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