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On the Surface Contribution
to the Grand-Canonical Pressure
of Free Quantum Gases
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The surface term in the thermodynamic pressure of free quantum gases is
proved to exist and is evaluated. Detailed proofs are given for parallelepipedic
domains with Dirichlet, periodic, and Neumann boundary conditions and
for more general domains with Dirichlet boundary conditions.
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1. INTRODUCTION

The thermodynamic description of large macroscopic systems is obtained
in statistical mechanics by considering the thermodynamic limit of the
finite volume pressure:

BP AP, 2) — [1; V(D log (A, B. z) (H

where £(/, 8, z) is the grand canonical partition function. More precisely,
it is expected that for A4 — <o, in a suitable manner, log Z(A, 8, z) has an
asymptotic cxpansion

log (A4, B, =) = V(A)BPR. z) + S(ADP(B, z) = OS) (2)

where V(A) is the volume of /1 and S(«1) is the arca of the boundary, ¢/, of A.
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The quantity P(B, z) is uniquely defined it the existence of the limit
of (log E)/V is established with 1 -» o such that S(A)/V(A)-» 0.
The existence of this limit has been proved for a wide variety of
systems, (1.2

If the system is considered to have macroscopic extensions in all dimen-
sions, such that surface effects are irrelevant for its thermodynamic behavior,
the first term of expansion (2) is & good candidate for the equation of state
of the system. However, for many systems of physical intersct, e.g., thin
films or wires, this is not the case. Then the second term of expansion (2)
has to be considered and the problem of the existence of

Ps(B, 2) = lim {[log 5(A, B. ) — V() BP(B, 2)/S(D)} 3)

arises. This 1s a much more difficult problem and, as far as we know, very
few results are known.®% Hence cven the simplest models might be of
interest.

We shall be concerncd with models of free quantum gases, for which
we prove the cxistence of, and evaluate, the limit (3). The calculation of the
limit (3) may be relevant to the study of finite size effects for free quantum
gases or equivalent models. The latter problem has been considered for a
long time both analytically and numerically.!®

One way to take into account the influence of the surface is to cvaluate
the surface term in the density of states. using gencralizations of Weyl's
asymptotic formula.'®! However, in view ol the asymptotic character of these
results, there is no simple way to evaluate the surface term in the grand
canonical partition function.

Our method consists in writing the grand canonical partition function
in terms of the Green function of the heat equation and to use the properties
of this Green function. However, difficulties arrise when handling Fermi
systems with z > z,, where z, depends on boundary conditions, and we
shall not consider this case.

In Section 2, the grand canonical partition functions for Maxwell-
Boltzmann (MB), Fermi- Dirac (D), and Bose -Einstein (BE) statistics are
written in terms of the Green function of the heat equation.

In Section 3, the case of parallelepipedic domains and Dirichlet, periodic,
and Neumann boundary conditions is considered.

In Section 4, we study in some detail the most interesting case of general
domains and Dirichlet boundary conditions.

In Section 5, we state, without a detailed proof. the results for more
general boundary conditions.
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2. REPRESENTATION FORMULAS FOR
GRAND PARTITION FUNCTIONS

Let us consider a free quartum gas enclosed in a bounded domain
A C R with sufficiently smooth boundary é/. For simplicity, we take
h = M = }. The formal Hamiltonian for an n-particle system contains
only the kinetic energy term

Hy= 15 4, @
221

In order to define properly the Hamiltonian as a self-adjoint operator
on L¥A), we must add boundary conditions for wave functions, We shall
consider boundary conditions of the following types:

eplen = oy (52)
¢ =0  Dirichlet boundary conditions (5b)
periodic boundary conditions (5¢)

Dirichlet boundary conditions correspond to a infinite wall potential and
are the most interesting from a physical point of view. Boundary conditions
(5a) with ¢ = 0 represent Neumann (clastic) boundary conditions. Of course,
periodic boundary conditions can be imposed only on parallelepipedic
domains. By the separation of variables, the cigenvalue problem for the
operator defined by (4) and (52)-(5¢) can be reduced to the eigenvaiue
problem for a one-particle Hamiltonian:

H— ) <62/'a.\-,2)J — Al gulx) = 0 ()

v
i=1

Of course the A, depend both on /1 and on the boundary conditions. For

simplicity, we shall no longer mention explicitly the dependence on boundary
conditions.

Let G,(x, B; x’,0) be the Green function of the heat equation, i.c.,
G, satisfies

34,G A(x, B; x',0) = (8/08) G .(x, B; x'. 0); xnxed B0

. ) (7)
l;\rg Galx, B;x,0) = 8(x — x')

together with the appropriate boundary conditions on ¢/1. For example,
for Dirichlet boundary conditions,

Gax, B; x', 0) = 0, xcéd, xed 8)
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G 4(x, B: x', 0) can be represented as'™

Gulx, B; x',0) - Z ('""""’a//,l(.\') P, F (X )]
from which we find

Yo = | Ga(x, By 3, 0) d'x (10)
n v

[n the following, we shall express the grand partition functions for frec
quantum gases in terms of G, using (10).

2.1. Maxwell-Boltzmann Statistics
In this case, the problem is very simple, as

I

A, Bz Y @i (Ye ) (1)
Lo n
which gives
H(A, B, z) = exp [: | Gax.8;,x,0) d".\'] (12)
L |

2.2. Fermi-Dirac and Bose~Einstein Statistics

The grand-canonical partition function has the well-known form'!

EA,B,z) =111/ ez (13)
where e+ —1 for FD statistics and € -: 1 for BE statistics. Using the
identity

log(l +u) = Y (1) WufIP) u <1 (14)
P
we have
log B(A, B, 2) = ¥ ¢ '=riP){Y e ™)
P 1 ‘n
= Z (e"1:0P) I GAx, BP: x,0) d'x (13)

Pl

This kind of representation appears in an approximate form in Ref. 9 and
can be obtained also as a particular casc of the functional integral representa-
tions of the grand-canonical partition functions. 010
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From (13), it follows that the serics (135) converges for
Lo (16)

where A, i1s the lowest eigenvalue of the one-particlec Hamiltonian, so that
the representation (15) s suitable lor Bose systems. For Fermi systems and
z Thzy o e another representation must be used. As expected. (12) can
be obtained from (15) in the limit z > 0.

3. PARALLELIPEPEDIC DOMAINS; DIRICHLET, NEUMANN,
AND PERIODIC BOUNDARY CONDITIONS

In this scction, we shall consider the simplest case in which /1 is the
parallelepiped 0 <X x, < /,, and boundary conditions are of Dirichlet,
Neumann, or periodic type. Because of the particular shape of the domain A,
the separation of variables can be used, and

Galx, B;x',0) = [] Gr(x,, B x/,0) (17
i1

Moreover, for these boundary conditions, the Green functions G, (v, 8; ', 0)
arc known.?

a

Gy, B;y.0) = Y [Go(y,B:2nL + y',0) -- 0G(y, B; 2nL - 3", 0)]

n=— (]8)
where 0 - —1,0,1 for Dirichlet, periodic, and Neumann boundary
conditions, respectively, and
Go(y, B5 ', 0) = Q2uB)~ 12 exp[—(y — »')*28] (i9)
From (19), it follows that
P l_ “'/_
> fo Go(y, B3 2nL — y')dy - 2mB) 1 | exp(-=2u¥/f3) du — %
- (20)

which gives

I‘L P
| Guy, B2, 0 dy = QuB)HL - W0QmR) 5 RILB) (2
[}

where

R(L,B) = 2L i exp(—2n2L2/B) (22)

n=1
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From (15) and (21), we have

e l —m v : 0 ‘
Iog H(A B Z) mzl ’77(2’76)‘ l i ! 5(27”71/8)1/2}

@

+ ¥ e ‘Z—" oL, , mB) (23)

m=1 m

where Q consists of a finite sum, each term containing at least one R(L, , mpB).
We shall show now that the sccond sum in (23) gives no contribution
to the surface term in the thermodynamic limit. A rough estimate gives

0 < RL A = 2fers (- 2] 1 Y e (- 2E )]

n--2

< 2L [cxp { 2—;;) “+ ]ﬂ exp ( _214_8_‘) du]

. LAgr (2mB)r® ]
< 2L [exp (— 7;‘)“ ST (24)
Now let 0 < z < I. What we nced are estimates of sums like 3., ="

exp(~-L*mp). Let mg be given by the equation

2™ s exp(- LA myB) (25)
Then
% m/iv L2 3 i Y S Lf__ : 2 Ny
Tree(-gg)<reel gl ¥
B my . 1‘2 . My lv
< f , exp ( - -Bu—) du - e
- , B /,S-I__]_(Zg z I l/2-|' . ] _ LZV \
= ec"p[ L{== ) 1 e 5|1ogzi.’
(26)
If use the notation
V(A) == ["] Lo, SN 2Y 1L (27)
i-1 J=l 47 )

then the results which follow from (23) and (26) can be stated as follows.
If0 <z <1, B >0, then

. log E(A, B, z)

Jim 3*’—-5(71‘)@—‘ BB Rl 29
i ‘_/A - A v Z Y 4
Ll.l> log 24, £, ) V(S()/(IZ}WB) At )(6 ) 9(2",‘8)‘1_")"28(1:-.'J,.’z(ﬁ’Z)

(29)
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wherc

° -l

gale, 1) = 3 i (30)

me i

The relation (28) expresses the well-known thermodynamic pressure of the

ideal BE or FD gas, while (29) represents the surface contribution to the

thermodynamic pressure. We stress that for pertodic boundary conditions,

there is no surface term, which, of course, i1s as expected. Finally, we remark
that forv > 2 and L; — o, i = 1,..., », such that

im[(log L)L} = 0 (30

for all pairs 1 << i, k <. v, Egs. (23) and (26) contain more information than
(28) and (29), namely the first v -+ [ terms in the asymptotic expansion of
log Z(A, B, z) with respect to the size of /1.

4. GENERAL DOMAINS;
DIRICHLET BOUNDARY CONDITIONS

The proof of the existence, and the evaluation. of the surface term for
more general domains and boundary conditions is more difficult, as there
are no explicit formulas for the Green functions. It is necessary to write
down the integral equations for the Green tunctions and to make the relevant
estimates.'®) However, for Dirichlet boundary conditions, the usc of the
maximum principle for the solutions of the heat equation™ allows us to give
an alternative proof of the fact that the formula (29) for 6 — —1 remains true
for rather general domains.

In the following, we consider that /A > o satisfying the conditions:

(a) A is a convex domain; (b) for every x ¢/, let R{x) be the radius
of the largest sphere contained in / and tangent to &/ at the point x. Then

%r% [xxcry;‘ R(x)] j_llm RAYy = (32)

The condition (a) is not an essential one but simplifics the proofs. For every
x' a /, let the point x” € &1 be such that

d(x', x") = x"—x" oanf dix', ),

yoco.

R

I1,- be the plane tangent to ¢/ at the point x”, and x” be the point symmetric
to x’ with respect to IT,- . We write the Green function in the form

Galx, B; x',0) == Gy(x, B:x".0) -~ Z4x, B;x.0) {(33)
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where
Gi(x, B; X', 0) = Gyx, B; X', 0) -- Gy (x, B; x", 0) (34)

is its plane approximation. We shall prove now that Z, is sufficiently small
so that it gives no contribution to the surface term of the thermodynamic
pressure. To this end, we need estimates on 74 .

From the fact that G ,(x, B; x, 0) > 0 and from the maximum principle,
it follows that for every x, x" € A,

0 Zx, B;x.0) - Gyx, 3:x,0) (35)
and of course
0 Zux, 3;x,0) Gylx, B:x,0) (36)
The estimates we need follow from (35), (36), and the maximum principle.
1. Forevery x' e 4,
0 - Za(x', B; X', 0) < 2mB) 2 [1 — expl - 4d%2B)] < 2ap)+2 2d%8  (37)
where d? = d?%(x’, x"). The inequality (37) follows casily from (35) and (34).
2. For cvery x' € A,
0 =X Z,(x, B; X, 0) < fexp(v.2)] Q=) *Zexp( d%2B) (38)

Let d* == Bv and y € ¢/l. From (36), we have, using the maximum principle
and the fact that Z,(x, 0; x’, 0) == 0,

0 < Zux', B;x',0) =0 sup Gy, 8 x,0)
yeo,]
0

Zosup (2afBY) - Zexpl ~d%2B) {39)

0 g

Since for 0 < B <2 B = d*wv, the function on the r.h.s. of (39} is increasing,
it follows that if’ ¢% > By,

035 Zxx, B;xX,0) 2ap) ¢ exp(—d228) (40)
{f d% << Bv, then from (36). we have

0 = Z(x, B; x',0) 2 (2mB) 2 lexp( —d*/272)]) exp(d?i2B)
L exp(r2)} 2By exp(—d%2B) (41)

and (38) foilows from (40) and (41).
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3. Let d < R(A)/2. Then
0 < Z,(x', B; X', 0) <2 2viey® [1; R 1] (42)

Again we make use of the maximum principle. Let > (x") be the sphere with
radius R(A) contained in 4 and tangent to ¢/ at the point x". Since
> (x") C A, we have

0 < Zx" B x',0) < sup Gy, 8755, 0)
yel A
0703

< sup Gz, B x,0) (43)

ze2(x”)
0<3’<8

Let us take, first, the maximum over z. With the notations of Fig. 1, we have

d? -+ 2R(R — dX1 -~ cos w)]{
28 )

o r 4dR(1 ~ cos ¢) 1}

X 31 —expl—w 25 £ ]\’

Taking into account that I — e~* <J ¢, for r = 0, and that d < R/2, we get

Gy(z, '3 %', 0) = (2mB) "7 fexp | -

(44)

sup Gz, B'; X', 0) < (2mB")~7(2d[ R) exp(—d*/28’) (45)

zeZ(z”

which gives (42) taking the maximum over 8’ € (0, %) in (45).

822/7/2-3
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Let 6/(d) be the set of points of A such that d(x, ¢A) -= d. From the
convexity of A, the area of &¢/(d) is a monotonically decreasing function
of d. In particular,

S(A) S(ed(d)); d -0 46)

Denoting by d, the solutior of the equation

vy L2 )
2() ki G R 7

and collecting the results contained in (37), (38), (42), and (46), we find

0 < f Za(x',mB; x', 0y dvx’
2 Wdy )
mB(2ampBy J(, u? du
S 2 vyt e ] / 1>
T ) s | (0 3) g o0 (- ) 4
= S(A) E(R, mB) (48)

< S [

Performing the integrals in (48), it is easy to sce that for every 0 < z < |,

llm Z E(R, mByz"/m) —= 0 (49)

R-a
=1

which finishes the proof of the lact that /; does not contribute to the surface
term of the thermodynamic pressure.

We shall now evaluate the surface term from G,(x’, mB; x’, 0).

From (46), it follows that

f Gy(x',mB; x",0) dvx <2 S(A) 1 2amBP {1 2mmB) 2] (50)
a

which gives
iim — fA Go(x's mf3; X7, 0) d"x i T (51)

A~ S‘(/l)
On the other hand, for every v -0, ¢ -0, il A is sufliciently large,
SEA):S(Ay =1 -y (52)

From this, it follows that

1
Go(x', mB X" 0y d'x’ = ]

3 Gmmp) 1 (53)

i o

From (51) and (53) and the fact that, for 0 .z <1, the series are
absolutely convergent, the formula (29) foliows.
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S. THE PROBLEM OF OTHER BOUNDARY CONDITIONS

In the previous sections, we have evaluated the surface term of the
thermodynamic pressure for Dirichlet boundary conditions and the proof
rests heavily on the maximum principle tor the heat equation. For more
general boundary conditions, this method can no longer be used. Since in
this general case, the proofs are longer and more technical, we shali give
here only the results and a plausibility argument, reserving the full proof
for a future publication. We begin with the form of the Green function for
a half-space. If the boundary is the hyperplane normal to Ox,, A =
{x1x, >0}, x" =(x,0,..,0)and y = (1, 0...., 0); then®

Gy, B; x',0) = Golp, Bi x',0) = Gyl y, ;- x',0)

— ZOJ Cdu ¢ Gy, By =X u, 0) du (54)
0

Now, if the surface is sufficiently smooth [i.c., /1 satisfies the condition (32),
for example], then locally the Green function for /A can be sufficiently well
approximated by Green functions for suitably chosen half-spaces and from
(54) we reach the conctusion that the surface term in the grand canonical
thermodynamic pressure is given by

PS(IB’ Z) = %(277:8)(1_-”)/2 g(.,..])/p_(e’ Z)

‘ 2 X em-1lgm . ez . 12
— v/ ——— o X —_— .
a(27B) mZ=l R ' ) du [expt m()]“ ] exp ( Siif ) dtJ
(55)
As expected for o = 0, o — o0, we recover the results obtained in previous
sections.
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